Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(1): 11-23, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181729

RESUMO

Precision medicine initiatives across the globe have led to a revolution of repositories linking large-scale genomic data with electronic health records, enabling genomic analyses across the entire phenome. Many of these initiatives focus solely on research insights, leading to limited direct benefit to patients. We describe the biobank at the Colorado Center for Personalized Medicine (CCPM Biobank) that was jointly developed by the University of Colorado Anschutz Medical Campus and UCHealth to serve as a unique, dual-purpose research and clinical resource accelerating personalized medicine. This living resource currently has more than 200,000 participants with ongoing recruitment. We highlight the clinical, laboratory, regulatory, and HIPAA-compliant informatics infrastructure along with our stakeholder engagement, consent, recontact, and participant engagement strategies. We characterize aspects of genetic and geographic diversity unique to the Rocky Mountain region, the primary catchment area for CCPM Biobank participants. We leverage linked health and demographic information of the CCPM Biobank participant population to demonstrate the utility of the CCPM Biobank to replicate complex trait associations in the first 33,674 genotyped individuals across multiple disease domains. Finally, we describe our current efforts toward return of clinical genetic test results, including high-impact pathogenic variants and pharmacogenetic information, and our broader goals as the CCPM Biobank continues to grow. Bringing clinical and research interests together fosters unique clinical and translational questions that can be addressed from the large EHR-linked CCPM Biobank resource within a HIPAA- and CLIA-certified environment.


Assuntos
Sistema de Aprendizagem em Saúde , Medicina de Precisão , Humanos , Bancos de Espécimes Biológicos , Colorado , Genômica
2.
Commun Med (Lond) ; 1(1): 42, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36750622

RESUMO

BACKGROUND: Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused on RT-PCR1. Host epigenome manipulation post coronavirus infection2-4 suggests that DNA methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected individuals, and help predict COVID-19 disease severity, even at initial presentation. METHODS: We customized Illumina's Infinium MethylationEPIC array to enhance immune response detection and profiled peripheral blood samples from 164 COVID-19 patients with longitudinal measurements of disease severity and 296 patient controls. RESULTS: Epigenome-wide association analysis revealed 13,033 genome-wide significant methylation sites for case-vs-control status. Genes and pathways involved in interferon signaling and viral response were significantly enriched among differentially methylated sites. We observe highly significant associations at genes previously reported in genetic association studies (e.g. IRF7, OAS1). Using machine learning techniques, models built using sparse regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and progression to death, respectively. CONCLUSIONS: In summary, the strong COVID-19-specific epigenetic signature in peripheral blood driven by key immune-related pathways related to infection status, disease severity, and clinical deterioration provides insights useful for diagnosis and prognosis of patients with viral infections.


Viral infections affect the body in many ways, including via changes to the epigenome, the sum of chemical modifications to an individual's collection of genes that affect gene activity. Here, we analyzed the epigenome in blood samples from people with and without COVID-19 to determine whether we could find changes consistent with SARS-CoV-2 infection. Using a combination of statistical and machine learning techniques, we identify markers of SARS-CoV-2 infection as well as of severity and progression of COVID-19 disease. These signals of disease progression were present from the initial blood draw when first walking into the hospital. Together, these approaches demonstrate the potential of measuring the epigenome for monitoring SARS-CoV-2 status and severity.

3.
Commun Med (Lond) ; 1(1): 42, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35072167

RESUMO

BACKGROUND: Since the onset of the SARS-CoV-2 pandemic, most clinical testing has focused on RT-PCR1. Host epigenome manipulation post coronavirus infection2-4 suggests that DNA methylation signatures may differentiate patients with SARS-CoV-2 infection from uninfected individuals, and help predict COVID-19 disease severity, even at initial presentation. METHODS: We customized Illumina's Infinium MethylationEPIC array to enhance immune response detection and profiled peripheral blood samples from 164 COVID-19 patients with longitudinal measurements of disease severity and 296 patient controls. RESULTS: Epigenome-wide association analysis revealed 13,033 genome-wide significant methylation sites for case-vs-control status. Genes and pathways involved in interferon signaling and viral response were significantly enriched among differentially methylated sites. We observe highly significant associations at genes previously reported in genetic association studies (e.g. IRF7, OAS1). Using machine learning techniques, models built using sparse regression yielded highly predictive findings: cross-validated best fit AUC was 93.6% for case-vs-control status, and 79.1%, 80.8%, and 84.4% for hospitalization, ICU admission, and progression to death, respectively. CONCLUSIONS: In summary, the strong COVID-19-specific epigenetic signature in peripheral blood driven by key immune-related pathways related to infection status, disease severity, and clinical deterioration provides insights useful for diagnosis and prognosis of patients with viral infections.

4.
J Genet Couns ; 30(1): 257-267, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32951257

RESUMO

The number of institutional and governmental biobanks and the target enrollment sizes of modern biobanks are increasing, affording more opportunities for the public to participate in biobanking efforts. In parallel with these expansions are pressures to increase the efficiency of obtaining informed consent using shorter consent forms that cover a broader scope of research and increasingly include provisions for return of research or clinical genetic test results to participants. Given these changes, how well these participants understand genetics, their level of understanding of what they are consenting to, and their wishes to engage longitudinally and receive biobank results are not well understood. We surveyed participants in a large, medical system-based biobank who had enrolled through a two-page, self-consent process about their baseline knowledge of genetics, understanding and recall of the consent process, wishes for future contact and engagement, and level of interest in receiving clinical genetic testing results. A total of 856 consented persons participated in the survey (67% women; 67% white). Participants' general reported genetics knowledge was relatively high (mean 11.60 of 15 questions answered correctly) as was recall of key elements from the two-page consent form. Overall participant enthusiasm for future contact by the biobank and for receiving clinical genetic testing results was high. The use of a two-page, self-consent process in a large, institutional biobank resulted in high levels of consent recall and enthusiasm for future ongoing engagement and receipt of genetic testing results by participants.


Assuntos
Bancos de Espécimes Biológicos , Pesquisa Biomédica , Termos de Consentimento , Feminino , Humanos , Consentimento Livre e Esclarecido , Masculino , Inquéritos e Questionários
5.
Acad Emerg Med ; 26(6): 639-647, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30239069

RESUMO

The Emergency Medicine Specimen Bank (EMSB) was developed to facilitate precision medicine in acute care. The EMSB is a biorepository of clinical health data and biospecimens collected from all adult English- or Spanish-speaking individuals who are able and willing to provide consent and are treated at the UCHealth-University of Colorado Hospital Emergency Department. The EMSB is the first acute care biobank that seeks to enroll all patients, with all conditions who present to the ED. Acute care biobanking presents many challenges that are unique to acute care settings such as providing informed consent in a uniquely stressful and fast-paced environment and collecting, processing, and storing samples for tens of thousands of patients per year. Here, we describe the process by which the EMSB overcame these challenges and was integrated into clinical workflow allowing for operation 24 hours a day, 7 days a week at a reasonable cost. Other institutions can implement this template, further increasing the power of biobanking research to inform treatment strategies and interventions for common and uncommon phenotypes in acute care settings.


Assuntos
Bancos de Espécimes Biológicos/organização & administração , Serviço Hospitalar de Emergência/organização & administração , Medicina de Precisão/métodos , Manejo de Espécimes/normas , Adulto , Bancos de Espécimes Biológicos/economia , Humanos , Consentimento Livre e Esclarecido , Fluxo de Trabalho
6.
Oncogene ; 24(54): 8080-4, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16027725

RESUMO

Disruption of components in the transforming growth factor-beta (TGF-beta) signalling cascade is a common occurrence in human cancers. TGF-beta pathway activation is accomplished via serine/threonine kinase receptors and intracellular Smad transcription factors. A key regulatory step involves specific ubiquitination by Smurfs that mediate the proteasomal degradation of Smads and/or receptors. Here, we report a novel interaction between Smads and ubiquitin C-terminal hydrolase UCH37, a deubiquitinating enzyme that could potentially reverse Smurf-mediated ubiquitination. In GST pull down experiments, UCH37 bound weakly to Smad2 and Smad3, and bound very strongly to Smad7 in a region that is distinct from the -PY- motif in Smad7 that interacts with Smurf ubiquitin ligases. Endogenous Smad7 and UCH37 formed a stable complex in U4A/JAK1 cells, and FLAG-Smad7 co-immunoprecipitated with HA-UCH37 in transfected HEK-293 cells. In addition, we show that UCH37 can deubiquitinate and stabilize the type I TGF-beta receptor. Furthermore, overexpression of UCH37 upregulates TGF-beta-dependent transcription, and this effect is reversed in cells subject to RNAi-mediated knockdown of endogenous UCH37. These findings support a new role for deubiquitinating enzymes in the control of the TGF-beta signalling pathway, and provide a novel molecular target for the design of inhibitors with therapeutic potential in cancer.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Carboxipeptidases , Linhagem Celular , Humanos , Testes de Precipitina , Proteínas Serina-Treonina Quinases , Interferência de RNA , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Ubiquitina/metabolismo , Ubiquitina Tiolesterase
7.
Biochem J ; 362(Pt 3): 643-9, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11879191

RESUMO

Transforming growth factor-beta (TGFbeta) is a key mediator of extracellular matrix (ECM) accumulation in sclerotic kidney diseases such as diabetic nephropathy. One of the main target cells for TGFbeta in the kidney are glomerular mesangial cells, which respond by increasing expression of ECM proteins, such as collagens, laminin and fibronectin, while suppressing the expression of ECM-degrading proteases and increasing the synthesis of ECM protease inhibitors, including plasminogen activator inhibitor-1. Previous studies have shown that exposure of mesangial cells to chronic high-glucose conditions, such as those seen in diabetes, increases ECM deposition in a mechanism involving glucose-mediated up-regulation of TGFbeta expression. Naturally occurring inhibitors of this TGFbeta-dependent fibrotic response include decorin, a small leucine-rich proteoglycan. While the mechanism by which TGFbeta stimulates gene expression via the Smad signal-transduction pathway is becoming clear, the precise mechanism by which decorin may impinge upon TGFbeta activity remains to be established. In this study, for the first time we provide evidence that decorin can disrupt glucose- and TGFbeta/Smad-dependent transcriptional events in human mesangial cells through a mechanism that involves an increase in Ca(2+) signalling, the activation of Ca(2+)/calmodulin-dependent protein kinase II and ensuing phosphorylation of Smad2 at Ser-240. We show that decorin also induces Ser-240 phospho-Smad hetero-oligomerization with Smad4 and the nuclear localization of this complex independently of TGFbeta receptor activation. Thus, in human mesangial cells, the mechanism of decorin-mediated inhibition of TGFbeta signalling may involve activation of Ca(2+) signalling, the subsequent phosphorylation of Smad2 at a key regulatory site, and the sequestration of Smad4 in the nucleus.


Assuntos
Cálcio/fisiologia , Proteínas de Ligação a DNA/metabolismo , Mesângio Glomerular/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Proteoglicanas/farmacologia , Serina , Transativadores/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Benzilaminas/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/farmacologia , Linhagem Celular Transformada , Primers do DNA , Proteínas de Ligação a DNA/química , Decorina , Inibidores Enzimáticos/farmacologia , Proteínas da Matriz Extracelular , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Mesângio Glomerular/efeitos dos fármacos , Humanos , Luciferases/genética , Fosforilação , Inibidores de Proteínas Quinases , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad2 , Sulfonamidas/farmacologia , Transativadores/química , Transfecção , Fator de Crescimento Transformador beta/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...